An Improved Algorithm of Bayesian Text Categorization
نویسندگان
چکیده
Text categorization is a fundamental methodology of text mining and a hot topic of the research of data mining and web mining in recent years. It plays an important role in building traditional information retrieval, web indexing architecture, Web information retrieval, and so on. This paper presents an improved algorithm of text categorization that combines the feature weighting technique with Naïve Bayesian classifier. Experimental results show that using the improved Gini index algorithm to feature weight can improve the performance of Naïve Bayesian classifier effectively. This algorithm obtains good application in the sensitive information recognition system.
منابع مشابه
Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملHierarchical Bayesian Clustering for Automatic Text Classification
Text classification, the grouping of texts into several clusters, has been used as a means of improving both the efficiency and the effectiveDess of text retrieval/categorization In this paper we propose a hierarchical clustering algor i thm that constructs a Bet of clusters having the maximum Bayesian posterior probability, the probability that the given texts are classified into clusters We c...
متن کاملSparse Logistic Regression for Text Categorization
This paper studies regularized logistic regression and its application to text categorization. In particular we examine a Bayesian approach, lasso logistic regression, that simultaneously selects variables and provides regularization. We present an efficient training algorithm for this approach, and show that the resulting classifiers are both compact and have state-of-the-art effectiveness on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSW
دوره 6 شماره
صفحات -
تاریخ انتشار 2011